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Abstract

The identification of dissimilar regions in spatial and tem-
poral data is a fundamental part of data exploration. This
process takes place in applications, such as biomedical
image processing as well as climatic data analysis. We
propose a general solution for this task by employing
well-founded statistical tools. From a large set of candi-
date regions, we derive an empirical distribution of the
data and perform statistical hypothesis testing to obtain
p-values as measures of dissimilarity. Having p-values,
we quantify differences and rank regions on a global
scale according to their dissimilarity to user-specified
exemplar regions. We demonstrate our approach and its
generality with two application scenarios, namely in-
teractive exploration of climatic data and segmentation
editing in the medical domain. In both cases our data
exploration protocol unifies the interactive data analysis,
guiding the user towards regions with the most relevant
dissimilarity characteristics. The dissimilarity analysis
results are conveyed with a radial tree, which prevents the
user from searching exhaustively through all the data.

1 Introduction

A fundamental task in data analysis is the evaluation
of internal data consistency by identifying similar and
dissimilar subregions inside spatial and temporal data.
Manual inspection is generally time-consuming or infea-
sible due to the amount of data usually encountered in
application scenarios such as biomedical image process-
ing, climate studies, etc. Thus, the user requires (semi-
)automatic search tools. A vast array of domain-specific
data analysis tools is available from a large body of re-
search.

In this work we propose a general framework for this
task based on sound statistical methods. Thus, our focus
lies in the proper and efficient use of statistics in data
analysis while still providing sufficient generality of the
method with respect to application domains. Having con-
structed empirical data-value distributions from various

regions in the input data, we perform a statistical hy-
potheses testing to compute a p-value per region that
is used as a dissimilarity measure. We discuss related
statistical aspects and provide a practical approach for
region aggregation to arrive at a hierarchical ordering of
the relative dissimilarities in the data.

We present visualization means to assist the user in an
interactive exploration of the dissimilarities in the input
data. We formulate a data exploration protocol which
takes advantage of available statistical information on
the dissimilarities. A radial tree of the hierarchical sta-
tistical data guides the user towards potential regions of
interest. In case of data change, the global data consis-
tency is tracked via a suitable timeline plot.

We apply our framework to two qualitatively different
scenarios: temporal data exploration and segmentation
editing of volumetric data. We provide the realizations
of our abstract concepts in the specific domains. An
evaluation of our method’s efficacy is given.

2 Related Work

Several works in the visualization and image process-
ing domains involve statistical comparison of regions in
volume data in order to detect features or highlight ir-
regularities. In particular, the task of classifying samples
of volume data into certain features or materials usually
involves such a comparison. Kniss et al. [1] discuss a
statistical classification procedure that they later apply to
rendering. Using a classifier, the method assigns to each
sample a probabilistic likelihood that it exhibits certain
features of the data. The classifier may have parameters
which are evaluated on a training set. The probabilistic
likelihoods are then transformed to the posterior proba-
bilities with the Bayes Rule. Based on the probabilities,
each sample is fuzzily classified. Each class exhibits var-
ious attributes, e.g., transfer functions. This technique
provides an efficient classification of the features, but re-
quires classifiers, parameter estimation, feature models,
and prior class probabilities beforehand. Our approach
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requires only the definition of regions in order to statisti-
cally compare them with a set of references.
Tasdizen et al. [2] improve tissue classification in MRI
(Magnetic Resonance Imaging) by using the data-value
distribution in a certain neighborhood around a voxel.
They compute the probabilities of observing particular
data values in the neighborhood if the voxel belongs to
a certain class. The entropy is calculated over the proba-
bilities of the voxel to belong to each possible class. It is
iteratively minimized while the classification of voxels
changes. This method requires an initial classification
that the authors obtain by co-registering the data with
a digital atlas. In our approach we do not need this po-
tentially complex step, as we get the references for the
statistical comparison directly from the input data.
Lundström et al. [3] use partial range histograms to intro-
duce a classification certainty as the second dimension
in 2D transfer functions. These histograms collect data
values of a certain range in a cubic neighborhood. The
ranges of values are determined by fitting Gaussian dis-
tributions to the global histogram of the data. The partial
range histograms are successively subtracted from the
global histogram. While this method improves the clas-
sification in regions where ranges of different materials
or tissues overlap, it does not explicitly test statistical
hypotheses, i.e., whether certain materials or tissues are
present in the region of interest. With our statistical ap-
proach one can test such hypotheses and make decisions
on test results. Heinzl et al. [4] extend this work by cal-
culating probabilities of different materials at each data
sample. However, a Gaussian distribution of the data
values is still assumed.
Johnson and Huang [5] detect features with distribution
queries. The data used for forming a query is sampled
in the neighborhood of each voxel. Then, the user spec-
ifies intervals of data values that are of interest. The
filtered data is organized into a histogram that represents
the target distribution. The user composes a query with
clauses on histogram bins. It is fuzzily matched with the
actual volume data. The queries may involve statistics
on the histograms, such as standard deviation, skewness,
covariance, etc. The user assigns to the queries various
attributes, e.g., transfer functions. With the rendered im-
age, the user may check hypotheses on the volume data,
formulated in terms of the queries. However, this work
does not include any statistical tests, which, in certain
scenarios, are required to make decisions based on the
volume data.
Saad et al. [6] investigate the uncertainty of a segmenta-
tion compared to expert segmentations in medical image
processing. They first construct an atlas that involves
two kinds of histograms: likelihood versus shape and

likelihood versus appearance. The atlas is constructed
with training data from experts. A multivariate Gaussian
distribution then models the appearance of the features
in the volume data. Prior to the uncertainty analysis, the
input-volume data is registered to the atlas. Using the
Bayes theorem, voxels are classified with the first-best-
guess logic. Finally, the discrepancies between actual
segmentation and atlas data are conveyed to the user.
This reveals regions of misclassification and abnormal-
ities in the volume data. We propose to capture shape
information via a special definition of regions that will
be explained in Section 5.2. We collect the data this way
instead of using prior shape information stored in an atlas
and which is only applicable after co-registration.

Haidacher et al. [7] assume that the data values have
Gaussian distributions, whose parameters they iteratively
evaluate while growing a sphere around each voxel. They
use the Jarque-Bera test for normality [8]. Welch’s T-
test [9] checks, whether the neighborhood sphere and its
hull have the same Gaussian distribution. The resulting
mean µ and standard deviation σ are used to modulate
the opacity of samples and their shading, so the impact of
noise is reduced. The user defines 2D transfer functions
in the µ versus σ space. This improves the classifica-
tion of materials or tissues during volume rendering. The
drawback here lies in the fixed distribution model that
is fitted to the data. In our approach we do not assume
any distribution model, relying instead on empirical dis-
tribution functions and statistical tests on them. These
functions approximate the underlying data-value distri-
bution.

Praßni et al. [10] investigate the usage of shape infor-
mation in the classification. They represent an object-
of-interest in the data with a curve skeleton. The object
is split into skeleton regions by corresponding skeleton
segments. Tubiness, surfaceness, and blobbiness are used
as additional dimensions for the classification of regions.
In contrast to computing such spatial properties, we pro-
pose to collect and statistically compare data values in
regions that are similar to the skeleton regions.

Comparison of regions is also utilized in segmentation(-
editing) techniques, which delineate the object-of-
interest from the rest of the data. For example, results
of the comparison may identify segmentation defects.
Our technique [11] detects segmentation defects by ana-
lyzing dissimilarities in data values. The object, defined
with the segmentation mask, is represented as a set of re-
gions aligned with the skeleton of the object. Inside each
such region a histogram collects the data values. The
histogram is compared to those from adjacent regions
in order to reveal data dissimilarities, associated with
segmentation defects. However, this approach cannot
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tell whether a certain region is actually part of the ob-
ject. It just delineates the object from the defects, having
detected certain dissimilarities. We provide this miss-
ing functionality with our framework and guide the user
towards regions that are relevant for editing. This appli-
cation scenario will be discussed in Section 5.2.
Some methods are designed for temporal data explo-
ration. Among them is the technique of Hochheiser and
Shneiderman [12] that enables the user to filter tem-
poral data, composed of numerous time series, with
search constraints. The time series are displayed in a
two-dimensional plot. Each constraint is defined by a
user-drawn rectangle – a timebox. It only matches time
series which have data values inside the corresponding
rectangle. Having specified several timeboxes, the user
gets an uncluttered view of time series of interest. With
our approach we may formulate such a filter as a statisti-
cal test of similarity to the data in the timebox. However,
we leave such extended functionality for future work.
Buono et al. [13] proposes a pattern search for temporal
data analysis. It is based on the Euclidean distance be-
tween corresponding values of two compared time series.
To improve the pattern matching, the distance metric in-
cludes four additional transformations, which normalize
the compared data. The user gets an overview of all re-
gions matched with the specified pattern. Our method
performs a statistical test of similarity of data values in
sub-regions of a time series and reports the resulting p-
values. As we aggregate regions with similar statistical
significance properties, the user can explore the data at
different levels of detail.
Buono et al. [14] focus on the prediction of a time series
using patterns found in the temporal data to make extrap-
olations into the future. Having constructed the empirical
distribution functions of the underlying data, one may
simulate future data values with our approach. An im-
plementation, however, would require domain-specific
knowledge. We leave such extension for future work.
The work of Bögl et al. [15] discusses a Visual Analytics
approach to the selection of appropriate models for time
series data. The user specifies the model by interactively
adjusting parameters and selecting characteristic values
in a timeline plot. During this specification, the remain-
ing model parameters are estimated. Then, the method
provides the user with an in-depth analysis of the selected
model’s fitness to the data. Various models are compared
by their information content. The user selects the most
informative one that later can be used for prediction.
Applied to temporal data, our approach solves a different
task. It detects the most similar or the most dissimilar oc-
currences, compared to the exemplar events. Even though
the results of our technique are not directly applicable

for prediction, they may be useful for finding causes
which lead to certain occurrences with respect to the
background information.

3 Method

In this section we provide an in-depth description of
our approach. We start with atomic regions, which are
the basis of our method. Inside each atomic region we
construct an empirical distribution function of data val-
ues. We statistically test dissimilarity between data in
the atomic regions and values in a set of markers, i.e.,
user-specified exemplars of regions of interest. P-values
of the dissimilarity significance are computed. Unions
of atomic regions form composite regions, which exhibit
either significant or non-significant dissimilarities to the
markers. The composite regions form a hierarchy, vary-
ing in size and representing the data with different levels
of detail. To support the data exploration task, we provide
the user with a radial tree view depicting the hierarchy
of the composite regions and the derived p-values. Hav-
ing linked visualizations of the data and the radial tree
view, the user follows our data-exploration protocol. To
support the user in scenarios with dynamically changing
data, we display global statistics on the p-values. An
overview of our method is given in Figure 1.

3.1 Requirements for Statistical Testing

The major requirement of our approach involves the defi-
nition of the atomic regions. These regions should reflect
domain-specific features of the data. The atomicity of
the region means that it should contain samples of only
one single feature. In other words, each atomic region be-
longs to a single feature only, i.e., the data-value distribu-
tion is assumed to be identical over the region. The atom-
icity is usually achieved by making the regions small
enough. Yet, each region should contain enough samples
to properly reconstruct the underlying data-value distri-
bution. In order to provide exact p-values, we restrict the
atomic regions to be non-overlapping. To preserve the
adjacency of the data at the level of atomic regions, each
region should be connected. An atomic region realiza-
tion that satisfies all the aforementioned requirements
will provide meaningful results in terms of statistics. The
composite regions then represent the domain-specific
features of the data on different levels of detail. The com-
puted p-values differentiate the features of interest from
the rest of the data.
Our work concentrates on the statistical framework that
operates on top of the realized atomic regions. We pro-
vide the realization of atomic regions for the general case



4 3 METHOD

User Input Data Application-
Specific Data

Markers
(Section 3.5)

Atomic Regions
(Section 3.1)

Composite Regions
(Section 3.6)

Distribution Recovery:
Empirical Distribution Functions

(Section 3.2)

Dissimilarity Testing (P-values of Atomic Regions):
Kolmogorov-Smirnov Test

(Section 3.3)

P-values of Compos-
ite Regions: Stouf-

fer’s Z-score Method
(Section 3.6)

Dissimilarity
P-values and
Significances

(Sections 3.8, 3.9)

Global Statistics
on P-values

(Sections 3.8, 3.9)

Data Exploration
using Dissimilarity

Significances
(Section 3.10)

Figure 1: Overview of our statistical method. The information from the data sources is transformed into our
internal entities (markers, atomic regions, and composite regions). We recover the underlying data-value
distributions in the atomic regions and the markers with empirical distribution functions. Then we perform
a statistical test on the significance of dissimilarities between the empirical distribution functions of the
regions. We present this information as well as global statistics on p-values to the user. Moreover, we
propose a data exploration protocol based on the dissimilarity significance information.
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as well as the specialized realization of atomic regions
for three-dimensional spatial data. Moreover, we validate
these realizations in two application scenarios.

The fundamental property of our framework is its abil-
ity to handle stochastic data. Our input data can stem
from a spatially and temporally varying probability dis-
tribution. For real-world data sources this is generally
the case. Natural local variations and inhomogeneities
in the data values, acquisition noise, discrete and finite
measurement domain and time introduce random fluctu-
ations in the data. We do not assume any knowledge of
the underlying distribution and operate on samples from
it (e.g., image of a CT (Computed Tomography) scan or
temperature measurements in climatic data). Even if the
data does not exhibit a stochastic nature, our approach
is valid, as we operate on data-value distributions that
characterize the various data regions and which are tested
for dissimilarity.

In this work we focus on scalar data values. An extension
to multi-dimensional data is possible, but we consider the
corresponding implementation of the statistical concepts
to be future work. The dimensionality of the data domain
can be arbitrary though. The density values from medical
imaging (CT, MRI) are given on a three-dimensional
grid. Abstract time series data consists of samples with
one temporal dimension. In the following section we
reconstruct the underlying data-value distribution from
the samples.

3.2 Distribution Recovery

Given a one-dimensional random variable V and an as-
sociated probability function F(s) that varies over an
underlying space s ∈ S, we take as input data a single
outcome o(d) of V on a discrete subset d ⊆ D of S.
We do not impose any structural constraints on D. In
most applications it is isomorph to a structured grid in
an m-dimensional space S . Imaging processes, for exam-
ple, yield two-dimensional and three-dimensional regular
grids of data, whereas temporal data is usually taken at
equidistant points in time.

The key idea of our approach is to recover the unknown
probability function F by collecting outcome data on cer-
tain subsets of D – the atomic regions. We are interested
in atomic regions that are similar or dissimilar to the
user-specified markers. The similarity is determined by
comparing the Empirical Distribution Functions (EDFs)
that are the distribution functions of the outcome val-
ues of V in the regions. We choose the EDFs as we do
not assume that the outcome values were drawn from
a certain probability distribution (even with unspecified

parameters). Instead, we could have selected a distribu-
tion model in advance and fitted it to the data. However,
this would limit the generality of our method, as the
choice of the appropriate distribution model depends on
the data modality. Having estimated the parameters of
the distribution model from the data, we could not di-
rectly apply classical statistical tests [16]. We could have
used kernel density estimation (KDE) methods to model
the unknown probability density function. This would
require a suitable kernel function. Also, the classical sta-
tistical tests would need adaptation (e.g., the two-sample
shape test on the KDE by Duong et al. [17]). With the
EDFs we perform the tests directly.

For an atomic regionR⊂D we build the corresponding
EDF F̂R from the outcomes inR by

F̂R(t) =
1
|R|

|R|

∑
i=1

1{o(di)≤ t}, di ∈R, (1)

1{E}=

{
1, if condition E is true
0, otherwise

, (2)

where |R| is the cardinality of R. Figure 2 illustrates
this concept. In order to construct the EDF, Equation 1
requires that the values o(di) are sampled from iden-
tical and mutually independent random variables that
correspond to the sampling locations d⊆D. The atomic
region definition already guarantees that the random vari-
ables have the identical distribution function FR (Sec-
tion 3.1). A set of random variables Ω is mutually inde-
pendent if the probability of any certain outcome of one
variable does not depend on outcomes of the remaining
variables. Formally, this means that ∀{A1, . . . ,AM} ⊆Ω

and ∀{a1, . . . ,aM} ∈ RM the following statement holds
true:

Pr

(
M⋂

i=1

{Ai ≤ ai}

)
=

M

∏
i=1

Pr ({Ai ≤ ai}) . (3)

This condition is satisfied in the majority of data acqui-
sition settings. For example, in medical imaging data
certain physical properties of tissues are measured, such
as density or echogenicity. These properties are mea-
sured locally at each sampling location independent of
the data values from neighboring sampling locations. The
independence could be violated due to correlation in the
acquisition noise. However, we found this effect to be
negligible for our use-cases. As a result, the required
EDF is available at each atomic region and can be used
for dissimilarity detection.
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Empirical Distribution Functions
𝐹ℳ1

𝑡 𝐹ℛ1
𝑡 𝐹ℛ2

𝑡 𝐹ℛ3
𝑡

Data
~𝒩 𝜇 = 70, 𝜎 = 32

~𝒩 𝜇 = 140, 𝜎 = 32

𝑅𝑂𝐼 Markers

ℳ1

𝑑ℳ1,ℛ1
= 0.73 𝑑ℳ1,ℛ2

= 0.04 𝑑ℳ1,ℛ3
= 0.26

Kolmogorov-Smirnov Two-Sample Test    pv = 𝑃𝑟 𝐷𝑛 ≥ 𝑑|𝐻0

Atomic Regions

ℛ1

ℛ2

ℛ3

Figure 2: Our method applied to a three-dimensional phantom dataset. The data includes an actual
object (red) in the region of interest (green), where the user would like to evaluate the dissimilarities. The
region of interest is split into the atomic regions R1,R2,R3, . . . , according to the realization that will be
explained in Section 5.2. Once the user has specified a single markerM1, our method builds empirical
distribution functions of the data values in the marker and the atomic regions. Our method employs the
Kolmogorov-Smirnov test to compute the p-values of the dissimilarity significance between the atomic
regions and the marker.
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3.3 Dissimilarity Testing

To quantify the data dissimilarities in two non-
overlapping regionsR1 andR2, we formulate the prob-
lem as a statistical hypothesis on the similarity of their re-
spective EDFs. The null hypothesis H0 is that both EDFs
F̂R1 and F̂R2 follow the same unspecified distribution. In
order to detect a possible violation of H0 (distribution
shape), we employ the two-sample Kolmogorov-Smirnov
test (KS) with statistic Dn [18, 19]:

Dn = sup
t∈R
|F̂R1(t)− F̂R2(t)|, (4)

n =
|R1||R2|
|R1|+ |R2|

, (5)

which is a random variable. We test the null hypothe-
sis H0 by computing the p-value pv as the conditional
probability:

pv = Pr (Dn ≥ d |H0) , (6)

where d is a value of the statistic Dn, computed with the
EDFs F̂R1 and F̂R2 of the outcome values o(di). This
statistical test is illustrated in Figure 2.
In common scientific practice, a significance level α is
chosen a-priori. The null hypothesis H0 is rejected if
pv ≤ α . Here, α determines the probability of falsely
rejecting H0. It is usually set to 0.05, however, it may be
different in various scientific domains. In our approach
we do not employ a single global significance level, but
directly report the p-values to the user. This allows an
inspection of the dissimilarity significance of all tested
region pairs.
Generally, computing the Kolmogorov distribution Dn is
complicated due to a lack of closed-form solutions. Ex-
isting approaches often operate with only a one-sample
test, where the EDF F̂R1 is matched against a fully speci-
fied distribution. However, we require the more general
two-sample test which checks whether two samples were
drawn from the same unspecified distribution.
The KS test requires that the hypothetical distribution
is continuous, and, therefore, there are no ties in the
sampled data (no same values). As we do not assume
any restriction on the hypothetical distribution, it can be
either continuous or discrete. If the hypothetical distri-
bution is discrete, p-values reported by the KS test are
inaccurate [20]. Also, if ties exist in the sampled data, the
test yields inaccurate p-values. For generality, we allow
the ties.
As stated by Arnold and Emerson [20], in case of a two-
sample test with a discrete hypothetical distribution, the
distribution of the test statistic depends on this unspec-
ified distribution. In such a situation, a resampling can

relax the requirements of continuity and no ties in the
data, so the statistical tests can be performed. This was
demonstrated by Dufour and Farhat [21] for the KS test.

The resampling of the outcome values o = {o1, . . . ,oM}
is achieved via bootstrap, permutation, or randomized
(Monte Carlo) tests. Let us assume the following E new
samples of the outcome values are drawn: r1, . . . ,rE .
Each new sample contains the same number of the out-
come values as the original sample o. The permutation
test generates all possible samples without replacement
out of o. The bootstrap test iterates over all possible
samples with replacement from o. The randomized tests
simulate E samples (with or without replacement) from o.
Then the test statistic is computed on the original sample
(do) and the new samples (dr1 , . . . , drE ). Assuming that
Dn is a random variable of the test statistic value, the
p-value of the test is calculated as follows:

pv = Pr (Dn ≥ do |H0) =
1+∑

E
i=1 1{dri ≥ do}

1+E
. (7)

The permutation and bootstrap tests have the same
asymptomatic power for the KS test, according to Praest-
gaard [22], and report true p-values. However, taking into
account all possible samples requires enormous compu-
tational efforts. To alleviate this issue, the randomized
tests probe only some randomly drawn samples, and
converge to true p-values given enough samples. Accord-
ing to Manly [23], the smallest recommended number
of samples is 1000 for the significance level α = 0.05,
however, Jackson and Somers [24] propose a minimum
of E = 10000. We choose the randomized permutation
KS test with at least 1000 samples. Next, we discuss
alternative tests. Then, we continue with the comparison
of data from the atomic regions with the reference values
in the markers.

3.4 Alternative Statistical Tests for Dissim-
ilarity

Alternative two-sample distribution shape tests include
the Chi-Squared test, Cramér-von Mises (CvM) test, and
Anderson-Darling (AD) test. The Chi-Squared test uses
binned data. We assume that the data values from the
tested regions R1 and R2 are binned into the follow-
ing NB bins H [1] , . . . ,H [NB]. The l-th bin counts we
denote asHR1 [l] andHR2 [l] respectively. The binning
is usually done in such a way that each bin contains
enough samples (more than five). The optimal binning
depends on the unspecified hypothetical distribution. The
test uses the statistic X [25][pp. 616–617] that follows
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a Chi-Squared distribution with NB degrees of freedom
under the null hypothesis:

X =
NB

∑
l=1

(K1 ∗HR1 [l]−K2 ∗HR2 [l])
2

HR1 [l]+HR2 [l]
, (8)

K1 =

√
|R2|
|R1|

, (9)

K2 =

√
|R1|
|R2|

. (10)

The test reports the p-value for the null hypothesis H0.
However, the Chi-Squared test does not suit our purpose
well due to the necessity of data binning.

The KS, the CvM and the AD tests assume a contin-
uous hypothetical distribution. The CvM test uses the
statistic W 2 [26]:

W 2 = K3

∫
∞

−∞

[F̂R1(t)− F̂R2(t)]
2 d F̂R1+R2(t), (11)

F̂R1+R2(t) =
|R1|F̂R1(t)+ |R2|F̂R2(t)

|R1|+ |R2|
, (12)

K3 =
|R1||R2|
|R1|+ |R2|

. (13)

The AD test computes the statistic A2 [27]:

A2 = K3

∫
∞

−∞

ω(t)[F̂R1(t)− F̂R2(t)]
2 d F̂R1+R2(t),

(14)

ω(t) =
1

F̂R1+R2(t)[1− F̂R1+R2(t)]
. (15)

All three statistics Dn,W 2,A2 can be used in the permuta-
tion, bootstrap, and randomized tests in case of a discrete
hypothetical distribution or ties in the sampled data. The
comparison of the randomized versions of the KS and the
CvM tests, conducted by Dufour and Farhat [21], shows
little difference in the power of these tests. The authors
state that the KS test is more conservative in rejecting the
null hypothesis H0 than the CvM test. In case of a dis-
crete hypothetical distribution, the latter rejects the null
hypothesis H0 more often than the specified significance
level. The AD test exhibits a better sensitivity to differ-
ences in the tails of the distributions than the KS test, as it
is using a weighting factor ω(t). Feigelson and Babu [28]
mention the following commonly overlooked restrictions
of the KS test: the independence of the two tested sam-
ples and applicability to one dimension only. The same
restrictions also apply to the CvM and the AD tests. To
keep computational efforts low, we favor the KS test.

3.5 Markers

In most applications, the user is interested in the compar-
ison of the regions with certain reference regions, rather
than in the comparison of all possible region pairs. This
enables data exploration tasks where reference regions
are selected and the most dissimilar (objective O1) or the
most similar (objective O2) regions are identified.
As a direct specification of the reference EDF is not possi-
ble, we have to estimate it from several reference regions,
which we subsequently call markers. A markerM is a
connected subset of the sampling space D of the input
data. The EDFs of all the markers approximate the un-
known reference distribution function. Given l disjoint
markersM1, . . . ,Ml , we compute the dissimilarity sig-
nificance for each region Ri and each marker M j by
evaluating Equation 4. This gives us a p-value pvi, j for
each such pairing and assigns l p-values to each region.
Note that due to their independence requirement, the sta-
tistical tests are only valid on disjoint regions. Thus, for
each of the aforementioned regions, its intersection with
the marker support has to be removed prior to the tests.
If the number of samples in the regionRi is too low for
calculating statistics, the corresponding p-values cannot
be computed exactly. Denoting the regionRi without the
marker support withR′i, we check the following criteria:

|R′i|< S0, (16)

|R′i|
|Ri|

< S1, (17)

where S0 is the absolute minimal count and S1 is the
minimal percentage. If any of the criteria is satisfied, we
leave the p-values pvi,1, . . . ,pvi,l undefined.
Since we are interested in a single p-value pvi for each
region Ri from all the markers, we combine the p-
values pvi,1, . . . ,pvi,l of the KS tests. We formulate the
task as follows: combine p-values pv1, . . . ,pvl into a
compound p-value pv. Nichols et al. [29] suggest to
combine the individual null hypotheses H0(1), . . . ,H0(l)
with a logical conjunction. The compound null hypoth-
esis H0 = H0(1) ∧ . . .∧H0(l) is then tested. The corre-
sponding compound p-value pv is computed as follows:
pv = max(pv1, . . . ,pvl). This is based on the following
logic: the compound p-value is significant only if each in-
dividual p-value is significant. The region has significant
dissimilarity only if it is significantly dissimilar to all the
markers. For each regionRi we compute its p-value pvi
as

pvi = max(pvi,1, . . . ,pvi,l). (18)

If the region Ri has insufficient cardinality, then none
of the p-values pvi,1, . . . ,pvi,l is defined. In this case,
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we do not define the compound p-value pvi as well. In
the following exposition, we introduce the concept of
composite regions for the data representation.

3.6 Composite Regions

In practice, the number of locations di at which the out-
come values o(di) are sampled is usually large. Common
medical or biological imaging output, for example, is
given on regular grids with millions of cells with data
values. This results in a large number of regions where
we compute dissimilarity significances. Without addi-
tional means, the user would have to investigate all of
them during the data exploration, which hinders the anal-
ysis task.

To alleviate this issue, we combine the p-values of cer-
tain regions into a compound p-value of the regions’
union. Figure 3 illustrates such a combination. Given
a set of k disjoint regions R1, . . . ,Rk, we state the fol-
lowing compound null hypothesis: the respective EDFs
F̂R1 , . . . , F̂Rk follow the same distribution as the EDF
of the markersM1, . . . ,Ml . For each atomic regionRi
we have computed the p-value pvi (Equation 18). We
now combine pv1, . . . ,pvk into the p-value for the com-
pound null hypothesis. For combining the p-values in
case of the multiple markers, we use the logical con-
junction scheme. However, it cannot be applied here,
because the compound region is supposed to have signif-
icant dissimilarity if any of its subregions is significantly
dissimilar to the markers. Therefore, we use Stouffer’s
Z-score method [30] with the statistic ZS:

ZS =
∑

k
i=1 Zi√

k
, (19)

Zi = inf{t | pvi ≤ Pr (N (0,1)≤ t)} , (20)

which follows a normal distribution N (µ = 0,σ = 1).
Each combined p-value is assumed to be drawn from
a normally distributed random variable Zi ∼ N (0,1)
(Equation 20). The combination method requires these
random variables to be independent. Therefore, the p-
values should come from independent tests, otherwise
the resulting p-value is inaccurate. We ensure this re-
quirement by testing only disjoint regions in the KS test.

As the sum of independent normal distributions is a nor-
mal distribution itself, a p-value of ZS can be computed,
which represents the p-value for the compound null hy-
pothesis:

pv = Pr (N (0,1)≤ ZS) . (21)

Later, Liptak, Mosteller and Bush introduced
weights ω1, . . . ,ωk for the combined p-values [31,
32]:

ZW =
∑

k
i=1 ω i Zi√

ω2
1+ . . .+ω2

k

. (22)

The test statistic ZW also follows a normal distribu-
tion N (0,1), so we obtain a p-value for the compound
null hypothesis. The choice of the weights ω i is an open
question, e.g., Whitlock suggests to use the degrees of
freedom from preceding statistical tests [33]. In our case,
the KS test and the Nichols et al. [29] combination for-
mula do not have any degrees of freedom, therefore, we
cannot assign the weights (ω1 = . . .= ωk = 1). One mi-
nor modification we introduce relates to atomic regions
with undefined p-values. If the p-value pvi is not defined,
then we omit it during the test. If all p-values pv1, . . . ,pvk
are not defined, then we do not define the p-value for the
compound region as well.
By partitioning the sample locations D into a set of dis-
joint atomic regionsRi, the p-values of arbitrary regions
in D can be computed as long as such regions are rep-
resented as unions of atomic regions. In this sense, the
p-values of the atomic regions form a basis from which
the p-values of all possible unions can be computed with
Stouffer’s method. We refer to such unions as compos-
ite regions C1, . . . ,Ch. The p-value of the composite re-
gion C j, spanning over the atomic regionsR j1 , . . . ,R jk ,
is computed with Equations 20, 21. To facilitate the data
exploration, we suggest that the composite regions vary
in cardinality and represent the data with different levels
of detail. Together the composite regions form a hierar-
chy. Next, we discuss alternative combination methods.
Then, we continue with ranking the composite regions.

3.7 Alternative Combination Methods

There are alternative methods to combine p-
values pv1, . . . ,pvk into a p-value pv for the compound
null hypothesis. Winkler et al. [34] mention the approach
of Nichols et al. [29], Stouffer’s Z-score method [30]
and some other approaches. Edgington [35] suggests the
following combination formula: pv = pv1+ . . .+ pvk.
Fisher’s combined probability test [36] computes
the statistic X = −2∑

k
i=1 logpvi that follows a

Chi-Squared distribution with 2k degrees of free-
dom. Friston et al. [37] propose to calculate the
p-value as pv = (max(pv1, . . . ,pvk))

k. Tippett [38]
suggests pv = min(pv1, . . . ,pvk) for the p-values
combination. A retrospective discussion by Cousins [39]
shows that there is no definite opinion on which test is
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pv = 𝑃𝑟 𝒩 0,1 ≤ 𝑍𝑠

Composite Regions

𝒞2

𝒞1

𝒞3

Stouffer’s Z-score method

pv𝒞1 < 10−70 (significant)

pv𝒞2 = 0.98 (non-significant)

pv𝒞3 < 10−70 (significant)

…

𝑍𝒞1 = −18, 𝑍𝒞2 = 2,

𝑍𝒞3 = −19, …

Compute 𝑍𝑆 from p-values

…

Atomic Regions

Figure 3: Computation of the p-values for the composite regions of the phantom data from Figure 2. The
realization of the composite regions will be discussed in Section 5.2. The composite regions span several
atomic regions. We show only three composite regions C1,C2,C3, but there are more. For these three
composite regions we present histograms of the p-values from the underlying atomic regions. For each
composite region, we combine these p-values with Stouffer’s Z-score method into a single p-value. The
resulting p-value refers to the compound null hypothesis H0 being true for all atomic regions within the
composite region.

the best. Different authors recommend Stouffer’s Z-score
method, Fisher’s combined probability test and Tippett’s
approach. We choose Stouffer’s Z-score method.

3.8 Global Ranking by Dissimilarity Sig-
nificance

In our visualizations we encode the p-values of regions
with certain visual attributes. Since the p-values generally
span a large range of orders of magnitudes, we cannot
directly map them to these attributes. Instead, we rank the
regions by their p-values and map the ranks to the visual
attributes. Our approach assigns ranks to all the regions,
taking into account their cardinalities and preserving
their relative differences in p-values. Using the ranks, the
user can compare regions with respect to their p-values
(Figure 4).
First, we sort all regions by their p-values in ascending
order. Next, we put the regions into NR bins B1, . . . ,BNR .
Since the regions vary greatly in cardinality, we equalize
the bins by the sum of the cardinalities of the regions,
instead of the number of the regions. During the binning
process, we keep the order, defined by the p-values. Each
bin has its own range of p-values that are determined

by its initially assigned regions. However, the p-value
ranges can overlap at the end-points. In this case, we
resolve ambiguities in bin assignments as follows. If a
region has a p-value falling into the ranges of several
bins Bk1 , . . . ,Bks (k1 < .. . < ks), we put this region into
the bin Bk1 . The rank of a region is the ordinal number i
of the bin Bi it belongs to. Regions with lower ranks have
smaller p-values and are more dissimilar to the markers
than regions with higher ranks. Depending on the task,
the user explores either low ranks (objective O1) or high
ranks (objective O2).

Since the composite regions cover several atomic regions,
they may have different range of p-values compared to
the atomic regions. As we do not compare the atomic
and composite regions, they are ranked separately. While
the user specifies the markers, we display the ranks of
the atomic regions. By looking at the ranks of regions
that contain data values similar to the reference ones,
the user can quickly validate the employed markers. If
these ranks are rather low, then the reference data-value
distribution is not adequately approximated by distribu-
tions from the markers. The user can refine the employed
markers by adjusting their sizes and locations as well as
adding new markers. During the data exploration we dis-



3.9 Dissimilarity Significance Visualization 11

Rank

Figure 4: The p-values and the ranks of the composite regions of the phantom data from Figure 2.
Each composite region out of 196 is shown with a disk. The area of a disk reflects the cardinality of the
corresponding region. The p-values non-uniformly cover the range of [0,1]. The ranks are color-coded.
They correspond to the p-values and can be used to compare the regions with respect to the dissimilarity
significance. All the ranks are equalized by the sum of the regions’ cardinalities (area of the disks) instead
of the number of the regions.

play the ranks of the composite regions, aiding the user
in efficient localization of the regions with a desired dis-
similarity significance. At this point we have established
all our abstract concepts. Next, we present the associated
visualizations.

3.9 Dissimilarity Significance Visualiza-
tion

Having collected all necessary statistical information, we
now visually encode it to facilitate the data exploration.
The composite regions form the hierarchy that represents
the data with different levels of detail. We visualize the
hierarchy with a radial tree, conveying p-values of the
regions via color (Figures 5c, 6). We define the level
of detail in the hierarchy as the ordinal number of the
corresponding level of the radial tree. The levels of detail
start from one at the root of the tree and increase. With
increasing levels of detail, this visualization occupies
successively more screen space. The angular size of a
region in the tree is determined by its cardinality. In
order to aid the user in reading statistical information, we
order the displayed regions with increasing dissimilarity
significance in a counterclockwise fashion. Because of
this layout, users easily spot relevant regions.
As all the data is represented with different levels of
detail, at each such level i there is a region with the
most significant dissimilarity Cmax,i and a region with

the least significant dissimilarity Cmin,i. Such regions are
of particular interest to the user, as they fit the selected
objective (either O1 or O2) the most. In order to con-
vey the relationships between these regions throughout
different levels of detail, we display a path of explo-
ration in the radial tree (Figure 5c2). In case of the objec-
tive O1, this path connects regions Cmax,i at each level of
detail i. For the objective O2, we connect with the path
regions Cmin,i. This path connects a composite region to
its subregion with the desired dissimilarity significance,
i.e., Cmax,i+1 ⊂ Cmax,i, Cmin,i+1 ⊂ Cmin,i. This way, the
user can investigate the data, by adjusting the level of
detail interactively. To simplify the exploration of the
finer (higher) levels of details, the j-th level parent of
the currently selected region becomes a new root of the
displayed radial tree. We set the value of j to half of the
number of visible levels in the radial tree. Sometimes, the
automatically suggested path would lead the user to a re-
gion that is sub-optimal in terms of the chosen objective.
We denote the level of detail that contains this region as k.
In order to proceed, the user employs the radial tree. At
the level k the user checks regions, alternative to Cmin,k

and Cmax,k, and alters the path. In the following sections
we explain in detail the data exploration with the radial
tree and the paths.

We employ the diverging color map blue-white-red by
Kenneth [40] for displaying derived statistical informa-
tion of the regions, as shown in Figures 5c1,d1. The
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higher ranks are displayed with blue color tones. This
tells the user that these ranks do not carry significant dis-
similarities to the markers. White tones indicate an uncer-
tainty related to the middle ranks: their p-values are not
small enough to judge if these ranks have a significant
dissimilarity. The lower ranks get the user’s attention,
being highlighted with red tones. The corresponding re-
gions exhibit significant dissimilarities to the markers.
The legend is displayed as an annulus around the radial
tree, conveying both the diverging color map and the
direction of increasing dissimilarity significance. As the
data may consist of multiple connected components, at
the coarsest level of detail the user can select the pre-
ferred component for further exploration. An additional
annulus around the tree is divided into sectors that cor-
respond to the connected components, which are given
in the data. This annulus is shown only if there are two
or more connected components, thus, it is not displayed
in Figure 5. We link the data view (Figure 5b) and the
radial tree view. This way, they complement each other.
The data view displays the data and its regions in two-
dimensional screen space. The radial tree view conveys
statistical characteristics of the regions and their hierar-
chy.

The specification of markers requires a certain precision
of the user input and involves the selection of samples
from the data. Minor variations in the marker’s position
are allowed as long as it only contains reference data
values. If markers belong to two or more features of the
data, all such features would be matched. For data with
one or two dimensions only the markers can be specified
directly in the corresponding data views. In case of three
or more dimensions the occlusion problem hinders the
exact specification of the region and, thus, we recom-
mend to show such data using the two-dimensional slice
view (Figure 5d). We encode the ranks of the atomic
regions with the same blue-white-red color scheme, as
used in the radial tree. This way we convey the dissim-
ilarity significance of the atomic regions with respect
to the currently specified markers. While the user spec-
ifies the markers, we compute the p-values and ranks
interactively to facilitate an immediate check whether
the current set of markers adequately approximates the
reference data-value distribution.

We support dynamical situations, when the data, the
markers, the atomic, or the composite regions change.
Such changes can occur even if the analyzed data is spa-
tial. We give as an example an interactive segmentation-
editing task, where the segmentation mask is a part of
the data. We record in time the consistency that indi-
cates an agreement of data-value distributions between
the markers and the rest of the data. As a measure of

the consistency, we use the median p-value across all
regions. The consistency is communicated to the user
via the p-values timeline plot (Figure 5a). In this plot we
use a logarithmic scale for the vertical axis. Each time a
change occurs, we add to the plot a new time step. In or-
der to better depict the trend of the p-values, we connect
the median p-values from the individual time steps with
lines. We do not use the largest and the smallest p-values,
because in real-world data there can always be outlier
regions with significant and non-significant dissimilari-
ties to the markers. We do not average the p-values, as
they may differ by orders of magnitude. Although the
user might be interested in the p-value distribution, the
median p-value is sufficient to judge consistency changes
in our use-cases.
The p-values timeline plot is useful in three cases. If too
few markers are specified, approximation of the reference
distribution by their EDFs is inadequate. This situation
is indicated by low median p-values. The user should
add more markers to improve the low consistency in this
case. After each change the user gets a hint whether the
consistency actually improves. Such a hint may be useful
in several applications, including tuning of filtering as
well as reconstruction algorithm parameters, detection
of acquisition artifacts, and abnormalities in the data,
segmentation editing. The latter application we will in-
vestigate in Section 5.2. Having stored the p-value range
of each rank for each time step, we can re-rank all current
regions according to the p-value ranges of the selected
time step. This enables a rank-based comparison that is
often required in the data exploration tasks.

3.10 Data Exploration using Dissimilarity
Significance

We propose the following protocol for data exploration,
aided by the dissimilarity significance (Figure 7). The
user starts the exploration in the radial tree view at the
coarsest level of detail. Depending on the task, the user
chooses the composite region with the most dissimilarity
significance (objective O1) or with the least dissimilarity
significance (objective O2). Then, the user follows the
automatically suggested path in the radial tree, reaching
the finer levels of detail. With the linked data view, the
user finds the necessary level of detail along the path.
If the current path (Figure 5c2) leads to a result, that
is sub-optimal in terms of the chosen objective, a new
path should be selected. To do so, the user finds along
the current path a coarse region, which is optimal in
terms of the chosen objective, and selects it by click-
ing. Then, the radial tree view is locked on the selected
region. In the radial tree view, the user explores a few
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Figure 5: The visualization components of our proposed approach: a) the (median) p-values timeline
plot, b) the data view, c) the radial tree view, d) a slice view for marker specification. The timeline plot (a)
shows the median p-values after the user specified four markers and applied four operations. The data
view (b) shows the entire data (b1, green) and the region of data, which is currently selected in the radial
tree view (b2, red). Each composite region is displayed as a node of the radial tree (c). The p-values in
the tree are color-coded according to the legend (c1). The user explores the data in the radial tree view
by following the paths (c2, c3). The automatically-generated path (c2) links the composite regions with
the most significant dissimilarities at each level of detail in the tree. Here, the user chose to explore an
alternative path (c3) by selecting composite region (c4). The rank of the selected region is communicated
at the annulus (c5). In this application scenario the markers are specified via the slice view (d). The
p-values in this view are color-coded according to the legend (d1) The user specified four markers in a
vascular structure (d2). The vessels are shown in blue tones (relatively low dissimilarity significance, d3),
and the bones are highlighted with red tones (relatively high dissimilarity significance, d4).

subregions of the selected region and selects one that fits
the chosen objective the best. The new path, which goes
through the selected subregion (Figure 5c4), is automati-
cally generated and displayed (Figure 5c3). Finally, the
user continues the data exploration, along the new path.

During the exploration, the user gets immediate visual
feedback in both the data view and the radial tree view.
This way, the user arrives at the desired region of the data,
which has a proper level of detail and fits the chosen

objective the best, without inspecting a possibly vast
number of composite regions.

4 Implementation

Our implementation uses C# with Intel TBB (C++, on
the CPU) and DirectX 11 Compute Shaders (HLSL, on
the GPU) for parallelization. We implemented the two-
sample randomized permutation KS test on the GPU.
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Figure 6: a) The radial tree and some of its nodes. b) The corresponding composite regions (shown in
red) of the data from Figure 2. The dissimilarity against the markerM1 is evaluated. Its significance is
color-coded in (a): blue tones depict large p-values (low significance), red tones highlight small p-values
(high significance), and white tones are in the middle.

The number of permutations has to be in the inter-
val [1024,1024 ·16]. The KS test reports p-values with
single-precision floating-point numbers. We run Stouf-
fer’s Z-score method on the CPU in parallel threads. The
computation of the normal distribution function is based
on works of Cody [41] and Wichura [42]. In order to
improve the numerical stability of our statistical frame-
work against overflows and underflows, we compare
pv′ = log(pv) rather than the p-values pv themselves.
The logarithm preserves the p-value comparison logic.

We store the samples from the continuous distributions
in sorted lists. As for the discrete distributions, the data
is organized into histograms, where each bin counts only
a single discrete data value.

The value of the parameter S0 = 15 in Equation 16 was
determined in the application scenario with small objects
(vessels in the human lower extremities), which will be
described in Section 5.2. Smaller values of S0 allow sta-
tistical tests on fewer data samples. However, if the data
samples are too small, a statistical approach is not appro-
priate. With S1 = 0.5 in Equation 17, the related criterion
is only satisfied in regions that have large overlaps with
markers. As data values in the overlaps are excluded from
the statistical tests, the remaining parts of such regions
are insufficient to perform the statistical tests. However,
the users already explored these regions during marker
specification, so we can safely exclude them from the
further analysis. We use NR = 256 as the number of ranks
for implementation convenience, mapping the ranks to
the blue-white-red color scheme.

5 Results

Our statistical framework supports a general scenario of
comparing regions of the data with the user-specified
markers. In this section we provide the following compo-
nents: the basic test for a pair of an atomic region and a
marker, the mechanism for combining p-values from mul-
tiple markers, and the combination method for composite
regions. For each concrete application, one first adapts
our framework to the application domain. The adaptation
requires a realization of the following abstract concepts:
the atomic regions R1, . . . ,Rk, the composite regions
C1, . . . ,Ch, the markersM1, . . . ,Ml . Moreover, our null
hypothesis H0 should have a proper interpretation in the
application domain.

Atomic regions. We suggest a general atomic-region
realization that should be used in case of a lack of a
domain-specific realization. All atomic regions have the
same cardinality, do not overlap, and each of them repre-
sents an m-dimensional hyper-cube in D. The cardinality
is application-dependent. It may use natural time inter-
vals of temporal data, e.g., hours, days, months, etc. For
spatial data it may reflect the expected feature size or
units of the volume.

Markers. The user specifies the placements and sizes of
the markers. To keep the markers easy to localize, we
realize them as m-dimensional hyper-cubes or m-spheres.
The markers are usually specified in the analyzed data.
However, they can also come from preselected reference
data values in external data sources.
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Figure 7: The data exploration protocol, using dissimilarity significance information. The radial tree view
shows the data with varying levels of detail. At each level of detail, the region with the most significant
dissimilarities is marked with a circle. Such regions across different levels of detail are linked with a path.
The first six levels of detail are explored, and the corresponding regions are highlighted in red in the linked
data view. The rest of the data is shown in green.
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Composite regions. The composite regions can be re-
alized according to the domain-specific logic. If such a
realization is missing, we suggest the following general
realization. First, we compare the p-values of the atomic
regions to the user-specified significance level α . This
will effectively remove many atomic regions that are
not important for the users. Depending on the objective,
we remove the regions with either non-significant (ob-
jective O1) or significant (objective O2) dissimilarities.
From the remaining atomic regions we construct the com-
posite regions by means of a watershed transformation.
For the objective O1 we use the p-value of each atomic
region as the height, whereas for the objective O2 we take
one minus the p-value. The watershed transformation cre-
ates basins and watersheds. The watersheds are the ridges
of the height field. They correspond to atomic regions
that maximally disagree with the chosen objective com-
pared to their neighborhood excluding the ridges. Each
basin contains a local minimum of the height field. Each
such minimum corresponds to an atomic region that fits
the chosen objective best compared to its neighborhood.
The remaining basin elements are separated from other
basins by the watersheds. These elements correspond to
atomic regions, which fit the chosen objective better than
the watersheds. Finally, each basin represents a compos-
ite region of the data that fits the chosen objective better
than its surrounding. We preserve connectedness of the
data between the basins by adding the watersheds to each
basin that they separate.

The number of composite regions may be too large for
the user to inspect directly. We recommend constructing
a hierarchy of the composite regions, if it is not accom-
plished by the composite region realization. We continue
with the hierarchical watershed approach by Hahn et
al. [43]. For combining the basins, we use the original
metric, suggested by the authors. It is equal to the water-
shed height. Using the metric, we choose two adjacent
basins with the lowest watershed between them among
all available basin pairs. With the objective O1, we select
two basins with the most significant dissimilarities. Un-
der the objective O2, two basins with the least significant
dissimilarities are found. We merge these two basins to-
gether, creating a new basin (a new composite region).
The merging is repeated iteratively until there are no
more adjacent basins. The constructed hierarchy repre-
sents the data with adjustable levels of detail. Alterna-
tively, one may cluster the composite regions. However,
clustering algorithms often require additional input in or-
der to produce sensible results. We favor the hierarchical
watershed transformation, as it does not introduce any
additional parameters and respects the connectedness of
the data.

We demonstrate the generality of our proposed statistical
method by applying it to two different types of data. In
the following section we describe a temporal-data anal-
ysis scenario. Next, our method assists the user during
segmentation editing on three-dimensional spatial data
from the medical domain.

5.1 Time Series Analysis
In the following we analyze a single time series. We
use the general realizations of our abstract concepts in
order to investigate it. As a concrete example, we take
the maximal daily temperature in Melbourne, Australia
in the period 1981–1990 (Figure 8a). The task is to find
similar weather conditions (objective O2). The atomic
regions span entire months. The user specifies a single
marker from 1981-Jun-03 till 1981-Jun-25 (Figure 8b).
The hierarchy of composite regions is then constructed
and displayed in the radial tree view. The user gets an
overview of all found time intervals with possibly similar
temperature distributions. In this case, ten intervals are
found (Figure 8c): July-August 1981, June-August 1989,
June-July 1986, June-July 1982, June-August 1983, June-
August 1984, June-August 1990, June-August 1987,
June-September 1985, and June-July 1988. They are or-
dered by decreasing p-values. The user checks each inter-
val (Figure 8f). The first seven time periods have the fol-
lowing p-values: pv1 = 0.388, pv2 = 0.387, pv3 = 0.276,
pv4 = 0.198, pv5 = 0.146, pv6 = 0.076, pv7 = 0.057.
These p-values are higher than the set significance level
(α = 0.05). The user concludes that there is no signifi-
cant difference so far in the weather conditions between
these time intervals and June 1981. The last three time
periods have the p-values below the significance level:
pv8 = 0.025, pv9 = 0.023, pv10 = 0.014. The user de-
cides, that the weather conditions exhibit significant dif-
ferences during these time intervals, compared to June
1981. Time intervals that were discarded during the com-
parison with the significance level, e.g., September 1983-
May 1984, have weather conditions with significant dif-
ferences compared to June 1981.

5.2 Segmentation Editing
Various applications may benefit from domain-specific
realizations of atomic and composite regions. The main
idea behind using the specialized realizations is to trans-
fer additional information to the statistical analysis. As
an example, we present an adaptation of our method for
segmentation editing, where we include spatial features
that are captured by skeletonization. Geometric opera-
tions on the input segmentation mask define the atomic
and composite regions.
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Figure 8: A time-series analysis using our dissimilarity-significance method. The task is to find similar
(objective O2) weather conditions, considering maximal daily temperature in Melbourne, Australia: a) the
measurements throughout the entire observation period (years 1981-1990), b) the user specifies the
marker (green) being interested in the temperature distribution from 1981-Jun-03 till 1981-Jun-25, c) the
user gets an overview of all found time intervals with possibly similar weather conditions (highlighted
with red-white-blue colors), d,e) the p-values legend for the atomic and the composite regions, f) the
user investigates ten found time intervals in detail via the radial tree. The first seven time intervals have
p-values higher than the set significance level (α = 0.05) and indicating no significant difference so far to
the weather in June, 1981. The last three time periods have p-values that are lower than the level α and
show significant differences in the weather conditions, compared to June, 1981.
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Let us assume that we have a three-dimensional data and
a mask L of an object, which is defined as a set of vox-
els. The mask L, generated (semi-)automatically, often
contains regions which, in fact, do not belong to the ob-
ject. Also, there are actual parts of the object that are not
included in the mask L. Both kinds of regions stem from
data irregularities/abnormalities and their processing by
the segmentation algorithms. The user searches for such
regions and either removes or adds them to the mask.

Our statistical approach assists the user during the data
exploration process. First, the user specifies the mark-
ers that definitely belong to the object. According to
our null hypothesis H0, we identify the first kind of re-
gions as having significant dissimilarities to the mark-
ers (objective O1). The second kind of regions, though,
exhibits non-significant dissimilarities to the markers
(objective O2). Having the dissimilarity-significance in-
formation, we suggest the user regions that are relevant
for subsequent editing.

The spatial features, captured by the skeletonization, are
vital for this scenario, as demonstrated by Karimov et
al. [11]. Therefore, we provide the specialized realiza-
tions of the atomic and composite regions.

Atomic regions. The concept of the influence zones, in-
troduced by Karimov et al. [44], perfectly matches the
atomic regions. The influence zones are constructed as
follows. We apply the thinning-based skeletonization by
Lee et al. [45] on the mask L. During the skeletonization
iterations we assign to each peeled voxel the current it-
eration number. With minor arithmetic operations, these
numbers are converted into skeleton distances. We link
each voxel in L to the closest skeleton voxel, building the
influence zones. The influence zones cover the mask L
entirely and do not overlap with each other. Each zone
can be thought of as a section of the object “orthogo-
nal” to the skeleton. We assume that each influence zone
belongs to a single spatial feature of the object if the
segmentation mask is correct. Influence zones at segmen-
tation defects, however, may belong to two or more spa-
tial features and exhibit mixed data-value distributions.
Such mixed distributions have significant dissimilarities
compared to markers, indicating the underlying defects.
If the object consists of several tissues or materials, data-
value distributions of influence zones should be partially
matched with the markers that represent individual tis-
sues or materials. Currently, the partial match is only
possible by placing additional markers at interfaces be-
tween different tissues or materials. The partial match
with reference data-value distributions, generated from
groups of weighted markers, is a promising future work.
We realize the atomic regionsR1, . . . ,Rk as the influence

zones, constructed by the algorithms from Karimov et
al. [44].

Composite regions. This time we adopt the concepts
of the correction regions and the correction operations,
introduced by Karimov et al. [11]. The entire mask L
is split into the correction regions according to the his-
togram dissimilarity metric. The metric analyzes differ-
ences between the influence zones and inside individual
influence zones in order to find discrepancies, specific to
the aforementioned two kinds of regions. To the user this
technique suggests a vast variety of correction operations
with the corresponding correction regions. The user man-
ually inspects them and selects the ones which actually
have to be removed or added to the mask L. The cor-
rection regions consist of the influence zones and form
a hierarchical representation of the entire mask L. We
realize the composite regions C1, . . . ,Ch as the correction
regions.

Instead of manually inspecting all correction regions,
the user follows the paths in the radial tree view. This
way we guide the user to the correction regions that are
relevant for the editing task. Each time the user edits the
mask L, the p-values timeline plot provides an indication
whether the mask L is improving during the correction
process. Non-significant p-values in this plot can be used
as a termination criterion of the editing process.

As a concrete example, we perform the segmentation
editing of CTA (Computed Tomography Angiography)
datasets of the human lower extremities. The goal is to
obtain the masks of the vessels, separated from the bones.
The given medical datasets exhibit severe pathological
conditions as well as major anatomical variability be-
tween the patients (missing vessel branches, different
branching points). The fact that vascular structures are
touching bones causes severe segmentation defects due
to the administered contrast agent (Figure 9a). In Figure 9
we present an editing process of one of these datasets.
The user starts with the segmentation that contains severe
defects, e.g., bones and table fragments (Figure 9a). Four
markers are specified inside of the vessels (Figure 9b). In
the slice view the user notices, that the vessels are colored
with blue tones (relatively low dissimilarity significance),
and the bones are mostly shown in red tones (relatively
high dissimilarity significance). The user removes the
table by removing connected components without mark-
ers. The user finds the first three correction operations,
following the automatically suggested paths in the ra-
dial tree view (Figure 9c-e). This removes major bone
structures, but fragments of the vertebrae, the tibia, and
the fibula are still present. Along the alternative path the
user finds the fourth correction operation that removes
the vertebrae fragments (Figure 9f). The remaining bone
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fragments are removed by the fifth correction operation,
found at the automatically suggested path (Figure 9g).
With this the user finishes the editing process, reaching
a satisfying result (Figure 9h). For validation purposes,
the resulting segmentation is checked against the initial
one. The user selects the last step in the timeline plot,
where the segmentation is not modified. As expected, all
the regions get higher ranks, indicating their relatively
low dissimilarity significance (Figure 9j). After editing,
the vessel mask has a quality level comparable to the
results of a technique used in the daily clinical routine
(Figure 9i). All major vessels are preserved, while bones
and table fragments have been correctly removed.

5.2.1 Domain Experts Feedback

In order to validate our statistical method with domain ex-
perts, we choose the segmentation-editing scenario in the
medical image processing domain. Two domain experts
evaluated our approach with respect to general usability,
benefits of having statistical information available, and
interaction aspects. They are radiologists, experienced
in segmenting vascular structures from various locations
of the human body. They are experienced in correcting
segmentation masks, since the results of their currently
employed methods do not meet the required quality stan-
dards. The resulting vessel mask is used for rendering of
vessel reformation images for diagnostic purposes.
During the evaluation session, the domain experts cor-
rected the vessel segmentation masks with our proposed
technique T1. Our domain experts also performed the
same tasks with the technique T2, described by Karimov
et al. [11], as well as with the technique T3 in the Angio-
Vis framework [46] that they use in the clinical routine.
The techniques T1 and T2 do not use any domain-specific
knowledge, in contrast to the technique T3.
We used ten CTA datasets from the daily routine of our
domain experts. First, we showed to the experts the cor-
rection of one dataset with our proposed technique T1.
The author presented the marker specification and the
data exploration protocol to provide a basic understand-
ing. The experts were introduced to the workflow of T1
as well as to the method for a statistical assessment of
suggested correction operations. Interaction examples
were presented. Then, the experts tried our proposed
technique T1 themselves on four other datasets in order
to train, as they were completely unfamiliar with it. The
same introduction to the technique T2 was made.
Each expert corrected five test datasets with tech-
niques T1, T2, and T3. For the initial segmentation,
we employed thresholding with a manually set constant
threshold, followed by a few morphological operations

and a connected components analysis. The technique T3
used the masks generated by an advanced vessel segmen-
tation technique that distinguishes bones and vessels via
an intensity criterion. Thus, the quality of the initial seg-
mentation was superior for the technique T3 than for the
techniques T1 and T2. However, the technique T3 and
its preceding segmentation method are parts of the well-
established clinical workflow, so we did not compensate
for this difference in our results. Each domain expert first
corrected the test datasets with T1, then processed them
with T2, and after three days processed them with T3.
After the experts finished their tasks, they answered our
questionnaire. We measured the time that was required
to correct the vessel masks. On average, with our tech-
nique T1 the experts spent five minutes fifty seconds on
each dataset. The users never finished their tasks with the
technique T2, as even one single dataset was not com-
pletely corrected after twenty minutes. With the base-line
technique T3 the experts achieved the desired vessel seg-
mentation in six minutes twenty seconds per dataset on
average.

The domain experts assessed the usability of our method
with the System Usability Score by Brooke [47]. The
average score was 86 points out of 100, which approx-
imately corresponds to the 90th percentile of the per-
ceived usability.

The experts felt confident while performing their tasks,
having the statistical information from our proposed
method. They consider this information as useful. Ac-
cording to our domain experts, the radial tree view signif-
icantly improved the overview of suggested correction
operations compared to the technique T2. Also, the ex-
perts liked the exploration of the suggested correction
operations with the paths, which indicate the statistically
most significant dissimilarities. The markers’ specifica-
tion via the slice view was rather easy and straightfor-
ward to our experts. With the markers the experts were
able to precisely indicate the regions of interest, i.e., the
vascular structures. Our chosen color-coding scheme
proved to be good for both the overview and exploration
purposes, judging by responses of the experts and the
achieved segmentation results. Finally, with the help of
the timeline plot as an overview, the experts were able to
see a progressive improvement of segmentation quality
during the correction. Details on the scores are available
in Figure 10a.

Even after a very short adaption period of ninety minutes,
the experienced radiologists liked the radial tree view of
our technique T1. It enabled the experts to efficiently nav-
igate between different correction operations. The paths,
displayed in the radial tree view, were beneficial for the
experts, who used this feature at each editing step. These
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Figure 9: The segmentation editing scenario using our dissimilarity significance method. The task is to
edit a segmentation mask of vascular structures in CTA data of human lower extremities. The composite
regions represent the mask with different levels of detail. In order to correct the mask, the user selects
regions for removal. The user is interested in the regions exhibiting significant differences (objective O1)
to the object-of-interest (vessels): a) the automatic vessel segmentation (green) exhibiting defects
(fragments of the scanning table and bones are included), b) the user specifies four markers inside of
vessels (indicated with arrows), c-e) following the automatically suggested paths, the user finds the first
three correction operations (removal of red parts), f) the user follows the alternative path and finds the
fourth correction operation (removal of red part), g) the user finds the fifth correction operation, following
the automatically suggested path (removal of red part), h) the user achieves a satisfying result after only
five operations, i) comparison of our method’s result with a result obtained by employing a technique from
clinical routine: the results are of the comparable quality, few small vessels are not properly segmented
as they are out of interest for the radiologists, j) the user validates the segmentation-quality improvement
by comparing the result (h) to the original state (a) (selected in the timeline plot) – the composite regions
are finally more in the blue color range and achieve higher ranks, indicating higher p-values than those of
the original segmentation mask.
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Figure 10: a) Evaluation of our technique. b) Comparison of our method (T1) to the clinical method (T3).
Grades range from 1 (worst) to 5 (best).
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Figure 11: The phantom object, its two parts and its skeleton.
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paths, being generated from the statistical information,
indicate the usefulness of our proposed statistical dissim-
ilarity evaluation method. The results of the technique T2
strengthen this fact further. Although the correction op-
eration suggestions were completely the same for the
techniques T1 and T2, the experts were unable to fin-
ish the editing with the technique T2 in a reasonable
amount of time (twenty minutes per dataset) due to the
data complexity. The main reason was a lack of overview
of the correction-operation suggestions, as pointed out
by the mediocre score in the evaluation by Karimov et
al. [11]. In our technique T1, the radial tree view and the
paths, carefully investigated by the radiologists, rectify
this deficiency and reduce necessary interaction. We may
conclude that our technique T1 enables the exploration
of data with complex structures, such as vessels.
Compared to the base-line technique T3, our tech-
nique T1 required less interaction. The task comple-
tion time was slightly shorter as well. Both techniques
were considered easy to use by the experts. The toler-
ance against imprecise input was rated slightly higher for
our technique T1. Both techniques T1 and T3 allowed
the experts to reach completely satisfying results. As
for support of the users during the interactive editing
with relevant information, our technique T1 was ranked
slightly better than the base-line technique T3. Detailed
information on a comparative evaluation can be found in
Figure 10b. In total, our technique T1 got a better score
than the base-line technique T3. This was achieved by
extending the existing technique T2 with our dissimi-
larity significance computation and novel visualization
components. Without these extensions, according to one
of our domain experts, the technique T2 “was unable
to process complex datasets such as peripheral arteries”.
Still, the technique T2 properly handles less complex
objects, such as single organs or specimens.

5.2.2 Robustness Tests

In order to verify the robustness of our statistical method,
we conducted several tests. For these tests we used three-
dimensional spatial data and the specialized realizations
based on the influence zones and correction regions. We
chose it because such kind of data is usually harder to an-
alyze than a time series due to the higher dimensionality.
Robustness of the Statistical Tests
In order to evaluate the robustness of the employed
statistical tests (the KS test and Stouffer’s Z-score
method), we conducted checks with a phantom 3D ob-
ject composed of two parts, each exhibiting different
data value distributions (six cases). The object is de-
picted in Figure 11. A single marker was placed in one

of two positions: the middle point of the upper part and
the middle point of the lower part of the object. The
marker radius was 16 voxels. The differences between
the distributions of two object parts were varied with
delta ∆d ∈ {0,1,2,4,8,16,32,64}. As a sanity check,
we included the situation where there is no difference
between the distributions (i.e., ∆d = 0). The original
parameters were µ1 = 30,σ1 = 10. The cases were:

• case C1 - the lower part has the Gaussian distribu-
tionN (µ1,σ1), and the upper part has the Gaussian
distribution N (µ1 +∆d,σ1)

• case C2 - the lower part has the Gaussian distribu-
tionN (µ1,σ1), and the upper part has the Gaussian
distribution N (µ1,σ1 +∆d)

• case C3 - the lower part has the Gaussian distribu-
tion N (µ1,σ1), and the upper part has the Poisson
distribution P(µ1 +∆d)

• case C4 - the lower part has the Gaussian distri-
bution N (µ1,σ1), and the upper part has the distri-
bution A1 ∼P((σ1 +∆d)2)+µ1−(σ1 +∆d)2 with
E[A1] = µ1 and Var(A1) = (σ1 +∆d)2

• case C5 - the lower part has the Poisson distribution
P(µ1), and the upper part has the Poisson distribu-
tion P(µ1 +∆d)

• case C6 - the lower part has the Poisson distribu-
tion P(µ1), and the upper part has the distribu-
tion A2 ∼P(µ1 +3∆d)−3∆d with E[A2] = µ1 and
Var(A2) = µ1 +3∆d

Following the common representation of three-
dimensional spatial data, the generated sample values
were rounded to integral numbers. The data values gener-
ated were numbers from−32768 to 32767 (signed 16-bit
integers).

The detailed information on the p-values along the skele-
ton is shown in Figures 12-17. The significance level
was α = 0.01. We note that the differences are statis-
tically significant starting from ∆d = 1 in the case C1,
∆d = 2 in the case C2, ∆d = 0 in the case C3, ∆d = 1
in the case C4, ∆d = 1 in the case C5, and ∆d = 2 in
the case C6. We conclude that our statistical pipeline
detects significant dissimilarities in all tested cases, even
if the differences are rather small (∆d ≥ 2). If ∆d ≥ 1,
the p-values of the object part without a marker indicate
significant dissimilarities (pv ≤ 0.01), as illustrated in
Figure 18. The p-values of the object part with a marker,
however, convey no significant dissimilarities. In case
of no differences (∆d = 0), the reported p-values show
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Figure 12: Case C1: p-values along the skeleton with respect to different ∆d. The top image shows the
p-values if the marker is placed in the upper object part. The bottom image reports the p-values if the
marker is located in the lower object part.
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Figure 13: Case C2: p-values along the skeleton with respect to different ∆d. The top image shows the
p-values if the marker is placed in the upper object part. The bottom image reports the p-values if the
marker is located in the lower object part.
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Figure 14: Case C3: p-values along the skeleton with respect to different ∆d. The top image shows the
p-values if the marker is placed in the upper object part. The bottom image reports the p-values if the
marker is located in the lower object part. The significant differences in the case of ∆d = 0 are caused
by two different distributions (Gaussian, Poisson), used for the upper and the lower parts of the object
respectively.
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Figure 15: Case C4: p-values along the skeleton with respect to different ∆d. The top image shows the
p-values if the marker is placed in the upper object part. The bottom image reports the p-values if the
marker is located in the lower object part. The significant differences in the case of ∆d = 0 are caused
by two different distributions (Gaussian, Poisson), used for the upper and the lower parts of the object
respectively.
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Figure 16: Case C5: p-values along the skeleton with respect to different ∆d. The top image shows the
p-values if the marker is placed in the upper object part. The bottom image reports the p-values if the
marker is located in the lower object part.
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Figure 17: Case C6: p-values along the skeleton with respect to different ∆d. The top image shows the
p-values if the marker is placed in the upper object part. The bottom image reports the p-values if the
marker is located in the lower object part.
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Figure 18: P-values for the upper (top image) and the lower (bottom image) parts of the object with
respect to different cases and ∆d. The single marker is placed either in the upper part (bottom image)
or in the lower part (top image) of the object. At ∆d = 0, the reported p-values are higher than the
significance level α in the cases C1, C2, C5, C6, indicating no significant differences. In the cases C3 and
C4, however, the p-values are below α . This corresponds to significant differences between two different
distributions. With ∆d ≥ 1, the reported p-values are also below α. This implies significant differences
between distributions.
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no significant dissimilarity as well (only applicable for
cases C1, C2, C5, C6).
Robustness against Noise
To verify the robustness to noise, two kinds of artificial
noise were added to the medical dataset depicted in Fig-
ure 7. The first kind of noise was normally distributed
with a mean µ = 0 and varying standard deviation σ

according to Table 1. The second kind of noise had a
Poisson distribution with a varying mean µ as shown in
Table 1. The PSNR (Peak Signal-to-Noise Ratio) was
used to evaluate the degree of artificial noise. We used
2048 as the maximal value (upper range for integer val-
ues used in CTA data). The segmentation mask was gen-
erated anew for each µ and σ . Our statistical method
was aiding an interactive segmentation-editing frame-
work. With a thresholding algorithm, masks of bones and
vessels were generated. The author then edited them to
keep only the vessels. For each dataset, only four mark-
ers were specified. In each corrected segmentation mask,
the markers were placed at exactly the same positions.
The markers’ positions were determined in the original
dataset without noise. In the test we used one medical
CTA dataset of the human lower extremities. The dataset
had 800 slices; each slice had resolution of 512 × 512
pixels.
At each tried noise level, the user achieved the desired
result. As a quality measure, we employed the Jaccard
coefficient J between the output mask and the reference
solution, obtained from the data without the artificial
noise and manually refined by one of our domain ex-
perts. The Jaccard coefficient is a normalized similarity
measure, which reaches one in case of a complete match
between two tested sets. The reference solution required
three editing steps as well as some voxel level editing, ac-
complished in 90 seconds. The input masks had a Jaccard
coefficient lower than 0.05, indicating a large deviation
from the reference solution. With all tried noise mod-
els, the editing was successful, as shown by a significant
improvement of the quality measure. Moreover, our sta-
tistical method was discriminating bones from vessels, as
demonstrated by the resulting segmentation masks of the
vessels. Detailed information on editing time, number
of steps and the output quality can be found in Table 1.
For comparison purposes, the resulting masks are shown
in Figure 19. The quality of the result, measured with
the Jaccard coefficient between the output mask and the
reference solution, was above 0.88.
Robustness of the Marker-based Reconstruction of
the EDFs
We evaluated how different numbers of markers can re-
construct the complex distribution function of a real-
world dataset with the following test. For this purpose,

we used the median p-value across all atomic regions as
a measure of consistency between the empirical distri-
bution functions of the markers and the underlying data
value distribution.

We randomly placed 50 markers inside the vessels of the
human lower extremities in a rather challenging medical
dataset (Figure 7). To estimate the stability of marker
placement, we repeated the procedure 50 times. We set
the significance level α to 0.05. In the test we used one
CTA medical dataset. The dataset had 800 slices; each
slice had resolution of 512× 512 pixels. We used the
vessel segmentation mask, edited and manually refined
by the domain expert.

Resulting median p-values for 50 sets of randomly placed
markers are shown in Figure 20. As expected, the more
markers we allocate, the more stable is the reconstruction
of the distribution function. This is reflected in relatively
large median p-values, which became non-significant af-
ter five markers in all 50 trials. The more markers we use,
the less is the median p-values variation. We may con-
clude that EDFs from five or more markers reconstruct
the data-value distribution of the real-world object with
sufficient precision.

5.3 Performance Tests

In order to test the performance of our statistical ap-
proach, we used an Intel Core i7-2600K 3.4 GHz CPU
with 16 GB of RAM and an NVidia GeForce Titan X
GPU. In the case of the temporal data with 3650 samples,
the calculation time is 0.004 seconds with one marker,
0.006 seconds with two markers, 0.01 seconds with four
markers, and 0.017 seconds with eight markers. For the
spatial example we use ten CTA datasets of the human
lower extremities with a slice resolution of 512× 512
pixels and the number of slices ranging from 700 to 975.
The datasets capture vessels and bones. The average cal-
culation time is 0.51 seconds with one marker, 0.72 sec-
onds with two markers, 1.16 seconds with four markers,
and 2.05 seconds with eight markers.

6 Discussion and Limitations

We identified certain limitations of our statistical ap-
proach. Construction of the EDFs requires a certain num-
ber of samples to achieve a sufficient precision. However,
this requirement may be violated in some atomic regions
of the data. Therefore, the statistical tests obviously can-
not be used in these regions. We display such regions
with an additional color that is not associated with the
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Figure 19: Comparison of the results with respect to different noise models.
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Table 1: Detailed information on the volume editing experiment with artificial noise

Gaussian noise

Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 Pass 6
Standard deviation σσσ 1 2 4 8 16 32
Estimated PSNR (dB) 65.1 59.9 54.3 48.4 42.6 36.9

Editing time (sec.) 103 79 116 150 86 101
Number of steps 8 3 7 6 5 5
Quality of result 0.972 0.949 0.971 0.943 0.935 0.884

Poisson noise

Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 Pass 6

Mean µµµ 1 2 4 8 16 32
Estimated PSNR (dB) 66.3 63.3 60.4 57.3 54.3 51.4

Editing time (sec.) 91 81 116 122 192 102
Number of steps 4 3 7 10 9 5
Quality of result 0.979 0.980 0.971 0.974 0.969 0.948
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Figure 20: Median p-values for different number of markers, placed randomly inside the vessels. Each
polyline represents one marker set. 50 marker sets were tried.
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ranking color scheme. The user has to evaluate dissimi-
larities in this kind of regions, which is a conventional
data-analysis task. For example, this happens with the
few small vessels of the human lower extremities in CTA
data. One possibility to address this issue is to improve
the sampling of the data acquisition technique.

The proper atomic regions realization is crucial for our
statistical approach. If the atomic regions for some reason
do not reflect important features of the data, then the re-
sults of our method, namely the composite regions, their
hierarchy, and the statistical information, may be sub-
optimal for the data exploration task. If this happens, the
user is required to check the entire hierarchy manually
in order to find regions that satisfy the chosen objective.
For example, in the case of the three-dimensional spa-
tial data it is important to capture spatial features. Our
specialized realization, described in Section 5.2, does
this by representing the data with the influence zones. In
certain cases, such a representation is sub-optimal, e.g.,
if two different structures are connected with each other
by a large contact area. As a result, these two structures
are not separated at the level of the atomic regions, and,
therefore, they are treated by our statistical approach as
belonging together. Particularly, this situation occurs in
regions, where the small vessels touch the bones in the
human lower extremities (CTA data). Additional domain
knowledge may rectify this deficiency.

If there were a systematic difference between distribu-
tions of conceptually same regions of the data, caused
by the data acquisition modality, our statistical approach
would over-estimate the dissimilarity significance. In par-
ticular, data from EM (Electron Microscopy) imaging
has a significant variation between the slices, acquired
from the specimen, which is physically cut into thin
slabs. One way to deal with such an over-estimation is to
pre-process the data, reducing the undesired variation in
it.

In case of degenerate distributions, which have only a
single outcome value, the statistical tests may report
extreme p-values – zeros and ones. However, this does
not pose a limitation for our statistical approach, as the
comparison by the p-values is still valid. Our statistical
method does not work with data, where regions that are
different according to the domain-specific logic exhibit
the same data-value distribution. However, in this case
other general approaches of comparison would probably
fail as well, as domain-specific knowledge is required to
differentiate such regions, indistinguishable by the data
values alone.

7 Conclusion
We proposed a novel abstract concept for statistically
quantifying dissimilarities between arbitrary regions of
m-dimensional data. The dissimilarity significances are
computed by hypothesis testing, based on robust and
sound statistical concepts. To facilitate data exploration,
we represent the data with different levels of detail. At
each level, we localize the regions with the most and
the least significant dissimilarities, aiding the user dur-
ing data exploration and analysis. We evaluated the gen-
erality of our method with two concrete applications:
temporal data exploration and segmentation editing. Our
proposed data exploration protocol streamlines the user
interaction in both scenarios, which is strengthened by
an evaluation with domain experts.
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